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The primary clinical role of brain imaging to date has been in diagnosis  
and monitoring of disease progression, rather than providing  
predictive markers for preventative stratification or early therapeutic  
intervention. The predominant strategy for finding image-based 
markers of neurological and psychiatric disease has been to identify 
patients early in the diagnostic process to maximize statistical power in 
a small cohort (tens to hundreds of subjects). A key factor motivating  
the use of small, clinically defined cohorts is the expense, time and 
specialized hardware associated with imaging. This approach has  
been effective in providing markers of disease progression, but  
identifying imaging markers of early disease requires measurements 
at the pre-symptomatic stage. Image-based measures of brain struc-
ture and function may evolve in a complex way throughout aging 
and the progression of neuropathology. Thus, markers with utility in 
monitoring disease progression post-diagnostically may not manifest 
pre-symptomatically, and conversely the most sensitive early predic-
tors of disease may have plateaued by the time existing diagnoses 
become accurate.

Nevertheless, when known risk factors have enabled risk-stratified 
cohorts, imaging has been able to predict disease before symptom 
presentation. For example, magnetic resonance imaging (MRI) has 
demonstrated altered brain activity that is associated with the APOE 
genotype decades in advance of symptoms associated with Alzheimer’s 
disease1, and conversion from mild cognitive impairment to 
Alzheimer’s has been predicted2. These studies suggest that the primary  

obstacle to identifying early imaging markers is obtaining data in pre-
symptomatic cohorts drawn from the general population.

Alternatively, pre-symptomatic cohorts can be assembled using a 
prospective approach, in which a large number of healthy participants 
are intensively phenotyped (including imaging) and subsequently 
monitored for long-term health outcomes. Although this approach 
is expensive, it is also efficient, as it captures early biomarkers and 
risk factors for a broad range of diseases. It further becomes possible 
to discover unexpected interactions between risk factors (such as 
lifestyle and genetics). To date, the largest brain imaging studies have 
gathered data on a few thousand subjects. Although this approach 
has identified associations between imaging and highly prevalent 
diseases, existing cohorts are still too small to produce sufficient  
incidence of many diseases if participants are recruited without  
identifying risk factors.

UK Biobank is a prospective epidemiological resource gather-
ing extensive questionnaires, physical and cognitive measures, and  
biological samples (including genotyping) in a cohort of 500,000 
participants3. Participants consent to allow access to their full health 
records from the UK National Health Service, enabling researchers 
to relate phenotypic measures to long-term health outcomes. This is 
particularly powerful as a result of the combination of the number of 
subjects and the breadth of linked data. Participants were 40–69 years  
of age at baseline recruitment; this aims to balance the goals of  
characterizing subjects before disease onset against the delay before 
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Medical imaging has enormous potential for early disease prediction, but is impeded by the difficulty and expense of acquiring 
data sets before symptom onset. UK Biobank aims to address this problem directly by acquiring high-quality, consistently 
acquired imaging data from 100,000 predominantly healthy participants, with health outcomes being tracked over the coming 
decades. The brain imaging includes structural, diffusion and functional modalities. Along with body and cardiac imaging, 
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markers of a broad range of diseases at their earliest stages, as well as provide unique insight into disease mechanisms.  
We describe UK Biobank brain imaging and present results derived from the first 5,000 participants’ data release. Although 
this covers just 5% of the ultimate cohort, it has already yielded a rich range of associations between brain imaging and other 
measures collected by UK Biobank.
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health outcomes accumulate. The cohort is particularly appropriate 
for the study of age-associated pathology. All data from UK Biobank 
are available to researchers world-wide on application, with no pref-
erential access for the scientists leading the study. An imaging exten-
sion to the existing UK Biobank study was funded in 2016 to scan 
100,000 subjects from the existing cohort, aiming to complete by 
2022. Imaging includes MRI of the brain, heart and body, low-dose 
X-ray bone and joint scans, and ultrasound of the carotid arteries. 
Identification of disease risk factors should increase over time with 
emerging clinical outcomes. For example, in the imaged cohort, 1,800 
participants are expected to develop Alzheimer’s disease by 2022,  
rising to 6,000 by 2027 (diabetes: 8,000 rising to 14,000; stroke: 1,800 
to 4,000; Parkinson’s: 1,200 to 2,800)4.

Here we present example analytic approaches and studies that 
will be enabled by UK Biobank. The identification of new imaging 
biomarkers of disease risk could support diagnosis, development 
of therapeutics and assessment of interventions. The multi-modal, 
multi-organ imaging enables the study of interactions between organ 
systems, for example, between cardiovascular health and dementia. 
The breadth of imaging makes this data set valuable for multi-systemic  
syndromes such as frailty, accelerated aging characterized by gen-
eral loss of reserves and poor tolerance to stressors, which indicates 
increased risk for a range of conditions including dementia5. This  
kind of resource can also evince hypotheses regarding causal mech-
anisms of disease that could be tested in follow-up interventional 
studies. Examples include modifiable risk factors, such as the associa-
tion of obesity with later life cognitive dysfunction6, and the ability  
to study complex interactions of risk factors with lifestyle, envi-
ronment and genetics. Finally, UK Biobank will enable validation  
and extension of associations identified by smaller-scale studies, 
including the testing of hypotheses that combine results from multiple  
previous studies.

RESULTS
Design rationale and initial imaging phase
The imaging study was designed to achieve the target of 100,000  
subjects, each scanned once, over 5–6 years at three dedicated,  
identical centers operating 7 days per week, each scanning 18 subjects 
per day (ref. 7). This requirement places tight timing constraints,  
corresponding to one subject imaged every 36 min (Online Methods). 
The first imaging center was built to establish feasibility and scanned 
10,000 subjects over a 2-year ramp-up period. Two further identi-
cal centers are being commissioned, with the three centers being  
strategically positioned at population hubs: Manchester, Reading  
and Newcastle.

To capture imaging phenotypes relevant to the widest possible range 
of diseases and hypotheses, our protocol must deliver data with the 
broadest predictive power for neuropathology and mental health. We 
therefore included modalities that drive estimates of anatomical and 
neuropathological structure (structural MRI), brain activity (func-
tional MRI, or fMRI), and local tissue microstructure (diffusion MRI, 
dMRI). The resulting imaging protocol (Supplementary Table 1)  
included three structural modalities, T1-weighted, T2-weighted and 
susceptibility-weighted MRI (referred to here as T1, T2 and swMRI); 
dMRI; and both task and resting-state fMRI (tfMRI and rfMRI). 
Recent advances in MRI acquisition technology8 enabled high spatial 
resolution dMRI and fMRI with high angular and temporal resolu-
tion, respectively, despite strict time constraints. For example, the 
protocol acquires dMRI data with 100 diffusion-encoding direc-
tions over two shells in just 7 min, enabling advanced model fitting 
of microstructural parameters that would not have been possible 

under these time constraints with previous generation technology. 
Following optimization of acquisition protocols, streamlining of  
participant preparation and minimization of scanner dead time 
(Online Methods), UK Biobank was able to incorporate six neuroim-
aging modalities in just 36 min.

Unlike most of the measurements included in the original UK 
Biobank resource (for example, alcohol consumption and cogni-
tive test scores), raw imaging data is not a directly useful source of 
information. In addition to requiring image processing to remove 
artifacts and align images across modalities and individuals, most  
useful image phenotypes are derived through complex calculations 
that combine many voxels and/or images. A fully automated process-
ing pipeline was developed that produces both processed images  
as well as image-derived phenotypes (IDPs); there are currently  
2,501 distinct individual measures of brain structure and func-
tion. Example IDPs include the volume of specific brain structures,  
the strength of connectivity between pairs of brain regions and the 
estimated dispersion of fibers in a given white-matter tract. IDPs  
are intended to be useful for non-imaging experts; however, under-
standing of the confounds and pitfalls of imaging is required to draw 
appropriate conclusions.

Here we present results from the first data release (http://biobank.
ctsu.ox.ac.uk/crystal/label.cgi?id=100), which includes outputs from 
the processing pipeline for 5,285 subjects scanned in 2014–2015.  
As determined by the processing pipeline, 98% of participants’ data 
sets resulted in a usable T1, which is crucial for deriving usable 
information from the other modalities. Of these, data for the other 
brain imaging modalities were suitable for processing in the follow-
ing percentages of subjects: T2 = 97%, swMRI = 93%, dMRI = 95%, 
tfMRI = 92% and rfMRI = 95%. All modalities were acquired and 
were usable in 89% of subjects. Results from this data release are 
illustrated in Figures 1–4, including a multimodal atlas (separate 
population-average images for each of the modalities, all aligned  
to each other), available for download and online browsing at http:// 
www.fmrib.ox.ac.uk/ukbiobank.

Imaging data, atlases and imaging-derived phenotypes
The three structural modalities (Fig. 1) provide information about dif-
ferent aspects of the brain’s tissues, structures and neuropathologies. 
Data quality at the single-subject level is illustrated in Figure 1a,b.  
The group-averaged images produced for each modality are included 
in the initial data release as high-quality atlases (Fig. 1c–f), depicting 
strong tissue contrast and excellent fidelity of alignment across sub-
jects. The T1 modality (Fig. 1a,c) is the most informative about the 
basic structure of the brain, including the depiction of the main tissue 
types (gray and white matter) and gross structure of the brain (main 
anatomical landmarks). From the T1 data, we derived 25 volumetric 
IDPs: total tissue volumes (gray, white and ventricular cerebrospinal 
fluid) and the volumes of subcortical gray matter structures such as 
thalamus, caudate, putamen, pallidum, hippocampus and amygdala. 
The T1 data and T1-derived IDPs provide sensitive markers of atro-
phy (tissue loss), which can be both global (for example, thinning of 
the cortex in aging)9 and local (for example, reduction of hippocampal 
volume in Alzheimer’s disease)10. The T2 data (Fig. 1b,d) is a fluid-
attenuated inversion recovery (FLAIR) acquisition that also depicts 
basic anatomy, but is valuable primarily for detection of focal ‘hyper-
intensities’ (that is, high-signal regions) in white matter. T2 hyper-
intensities represent white matter lesions that have been associated 
with a broad range of neuropathological conditions11 (for example, 
small vessel ischemic disease), and occur with increasing incidence 
in aging populations without (or potentially before) manifestation of 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100
www.fmrib.ox.ac.uk/ukbiobank
www.fmrib.ox.ac.uk/ukbiobank
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neurological symptoms. IDPs relating to the volume of these white 
matter lesions will be included in future data releases. swMRI is a 
flexible modality that can be processed in multiple ways, each sensi-
tive to different clinically relevant properties. The first data release 
includes T2* signal decay times and enhancement of venous vascula-
ture using susceptibility-weighted image (SWI) filtering12 (Fig. 1e,f). 
swMRI IDPs in the current data release are the median T2* in each of 
14 major subcortical gray matter structures, for example, reflecting 
increased iron deposition associated with neurodegeneration13.

dMRI (Fig. 2) reflects the random diffusion of water molecules, 
which is affected by the microscopic structure of tissue14, enabling 
us to infer the local density of cellular compartments in tissue (for 
example, neurites). In addition, axon bundles in white matter create 
an orientation dependence of water movement as a result of hindrance 
of diffusion perpendicular to the long axis of white matter tracts, an 
effect that can be tracked from voxel to voxel (tractography) to derive 
long-range white matter pathways. Three complementary diffusion 
models were fit to the signal in each voxel: (i) the diffusion tensor 

model15, describing the signal phenomenologically as resulting from a 
three-dimensional ellipsoid profile of water displacement; (ii) the neu-
rite orientation dispersion and density imaging (NODDI) model16, 
estimating microstructural properties (for example, neurites versus 
extracellular space); and (iii) the ball and sticks model17, estimating 
the orientation of multiple fiber populations in a voxel for tractogra-
phy. We extracted 675 IDPs by averaging parameters estimated by the 
first two models over 75 different white matter tract regions on the 
basis of both subject-specific tractography18 and population-average 
white matter masks19.

fMRI reflects neural activity indirectly, measuring dynamic changes 
in blood oxygenation and flow resulting from changes in neural 
metabolic demand20. The task deployed in tfMRI (Fig. 3) involved 
matching shapes and emotionally negative faces21 and was chosen to 
engage a range of neural systems, from low-level sensory and motor 
to perceptual (for example, fusiform) and emotional (for example, 
amygdala) areas. The 16 tfMRI IDPs quantitate the strength of brain 
activity changes for specific aspects of the task in regions defined 
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Figure 1 Data from the three structural imaging modalities in UK Biobank brain imaging. (a) Single-subject T1-weighted structural image with 
minimal pre-processing: removal of intensity inhomogeneity, lower neck areas cropped and the face blanked to protect anonymity. Color overlays show 
automated modeling of several subcortical structures (above) and segmentation of gray matter (below). (b) Single-subject T2-weighted FLAIR image 
with the same minimal pre-processing showing hyperintense lesions in the white matter (arrows). (c) Group-average (n ≈ 4,500) T1 atlas; all subjects’ 
data were aligned together (see Online Methods for processing details) and averaged, achieving high-quality alignment, with clear delineation of deep 
gray structures and good agreement of major sulcal folding patterns despite wide variation in these features across subjects. (d) Group-average T2 
FLAIR atlas. (e) Group-average atlas derived from SWI processing of swMRI phase and magnitude images. (f) Group-average T2* atlas, also derived 
from the swMRI data. (g) Manhattan plot (a layout common in genetic studies) relating all 25 IDPs from the T1 data to 1,100 non-brain-imaging 
variables extracted from the UK Biobank database, with the latter arranged into major variable groups along the x axis (with these groups separated by 
vertical dotted lines). For each of these 1,100 variables, the significance of the cross-subject univariate correlation with each of the IDPs is plotted 
vertically, in units of –log10(Puncorrected). The dotted horizontal lines indicate thresholds corresponding to multiple comparison correction using FDR 
(lower line, corresponding to Puncorrected = 3.8 × 10−5) and Bonferroni correction (upper line, Puncorrected = 1.8 × 10−8) across the 2.8 million tests 
involving correlations of all modalities’ IDPs against all 1,100 non-imaging measures. Effects such as age, sex and head size are regressed out of 
all data before computing the correlations. As an indication of the corresponding range of effect sizes, the maximum r2 (fractional variance of either 
variable explained by the other) is calculated, as well as the minimum r2 across all tests passing the Bonferroni correction. Here, the maximum r2 = 0.045  
and the minimum r2 = 0.0058. (h) Plot relating all 14 T2* IDPs to 1,100 non-imaging variables. Maximum r2 = 0.034, minimum r2 = 0.0063. 
Marked Bonferroni and FDR multiple comparison threshold levels are presented as in g.
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using the group-averaged activation maps shown across three task 
conditions. Resting-state fMRI (Fig. 4) identifies connected brain 
regions on the basis of common fluctuations in activity over time 
in the absence of an explicit task22. Sets of voxels that cofluctuate 
most strongly correspond to brain regions, referred to as network 
‘nodes’; different nodes may have weaker cofluctuations, indicating a 
connection between them, or a network ‘edge’. The group analysis of 
the rfMRI data generated two atlases of these functional networks: a 
low-dimensional decomposition of the brain into 21 functional sub-
divisions and a higher dimensional parcellation into 55 subdivisions. 
IDPs represent edge connectivity strengths and node fluctuation 
amplitudes (Fig. 4).

Voxel-wise associations with aging
IDPs reduce raw data into a compact set of biologically meaningful 
measures, with current measures condensing ~2GB of raw data per 
subject into 2,501 IDPs, but such summary measures can lose valu-
able information. For example, once aligned to common coordinate 
systems, images can be analyzed for cross-subject variation at the 
voxel level to provide a more spatially detailed exploration than can 
be achieved via IDPs. However, this requires greater imaging expertise 
and computational resources, as well as often leading to lower statis-

tical power (as a result of the greatly increased number of multiple 
comparisons and the higher noise in voxel-wise measures compared 
with regional averages).

Figure 5 presents voxel-wise correlations of age with several param-
eters modeled from the dMRI data (along the centers of the main 
white matter tracts), as well as normalized T2 FLAIR intensity in the 
white matter. Fractional anisotropy (FA), a sensitive, but nonspecific, 
marker of white matter integrity, predominantly demonstrated the 
established reduction of FA with aging (Fig. 5a,g). However, some 
voxels exhibited the opposite, with FA increasing with aging, which 
may reflect degradation of secondary fibers or reduced fiber disper-
sion23; notably, none of the FA-based IDPs exhibited this significant 
positive correlation, demonstrating that averaging across tracts 
can sacrifice richness of information. The tensor mode24 (Fig. 5b), 
which primarily describes whether a voxel contains one versus mul-
tiple tracts, was even more sensitive, with highly significant positive 
correlations in certain association fiber areas and posterior corpus 
callosum, which is likely the same effect seen as FA increases23. We 
further observed an increase in free water with aging (Fig. 5d); the 
strongest increase, in the fornix, was likely a result of an increase of 
the fraction of cerebrospinal fluid in voxels spanning this thin tract as 
it atrophies. Finally, we calculated voxel-wise cross-subject correlation 
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Figure 2 The diffusion MRI data in UK Biobank. (a) Group-average (n ≈ 4,500) atlases from six distinct dMRI modeling outputs, each sensitive to 
different aspects of the white matter microarchitecture. The atlases shown are: FA, MD (mean diffusivity) and MO (tensor mode); and ICVF (intra-
cellular volume fraction), ISOVF (isotropic or free water volume fraction) and OD (orientation dispersion index) from the NODDI microstructural 
modeling. Also shown are several group-average white matter masks used to generate IDPs (for example, pink (r) are retrolenticular tracts in the internal 
capsules; upper green (s) are the superior longitudinal fasciculi). (b) Tensor ellipsoids depicting the group-averaged tensor fit at each voxel for the 
region shown in the inset in c. The shapes of the ellipsoids indicate the strength of water diffusion along three principal directions; long thin tensors 
indicate single dominant fiber bundles, whereas more spherical tensors (within white matter) generally imply regions of crossing fibers (seen more 
explicitly modeled in corresponding parts of c). (c) Group-averaged multiple fiber orientation atlases, showing up to three fiber bundles per voxel. Red 
shows the strongest fiber direction, green the second and blue the third. Each fiber bundle is only shown where the modeling estimates that population 
to have greater than 5% voxel occupancy. Inset shows the thresholded mean FA image (copper) overlaid on the T1, with the region shown in detail in 
b and c. (d) Four example group-average white matter tract atlases estimated by probabilistic tractography fed from the within-voxel fiber modeling: 
corpus callosum (genu), superior longitudinal fasciculus, corticospinal tract and inferior fronto-occipital fasciculus. (e) Plot relating all 675 dMRI 
IDPs (nine distinct dMRI modeling outputs from tensor and NODDI models × 75 tract masks) to 1,100 non-imaging variables (see Fig. 1g for details). 
Maximum r2 = 0.057, minimum r2 (passing Bonferroni) = 0.0065. Dotted horizontal lines (multiple comparison thresholds) are described in Figure 1g.
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of age with T2 images. This analysis identified peri-ventricular areas, 
which are most susceptible to white matter hyperintensities known 
to be associated with aging (Fig. 5e).

A further example voxelwise analysis is shown in Supplementary 
Figure 1, in which we used the rfMRI data to investigate aging effects 
in the default-mode resting-state network25. This also provides a dem-
onstration that group analyses do not degrade with increasingly large 
subject numbers (for example, as a result of alignment issues), as we 
used group sizes from 15 to 5,000. With increasing subject numbers, 
background noise was suppressed without increase in spatial blurring, 
and localized estimates of age-dependence stabilized, with statistical 
significance rising indefinitely.

Pairwise associations between brain IDPs and other measures
We conducted simple univariate association analyses to illustrate the 
richness of relationships between IDPs and other available variables, as 
well as the statistical power afforded by ~5,000 subjects. We individu-
ally correlated all 2,501 brain IDPs with 1,100 other Biobank variables; 
the latter were broadly grouped into 11 categories (Figs. 1–4 and 6,  
and Supplementary Fig. 2). Even after false discovery rate (FDR) 

multiple comparison correction for these 2.8 million correlations, 57 
of the 66 combinations of brain modalities and non-brain-imaging 
categories showed significant associations. Some variable categories 
exhibited large numbers of associations with IDPs (for example, height 
and weight), whereas others (for example, cognitive measures and 
alcohol and tobacco intake) had more focused associations.

The above associations were estimated after adjusting all variables for 
age, sex, age-sex interaction, head motion and head size (de-confounding).  
Some factors can unambiguously be considered a confound to be 
removed (for example, head motion, which can corrupt IDPs, but also 
correlates with disease and aging26). For other factors (for example, 
age), the appropriateness of de-confounding depends on the question 
being asked and needs to be taken into consideration when inter-
preting associations (see Discussion). The relationship between the 
correlations estimated with versus without de-confounding (Fig. 6d)  
revealed that, in almost all cases, the strength of association was 
reduced by de-confounding, and in some cases was almost entirely 
removed (horizontal cloud around y = 0).

We considered associations between cognitive tests and brain IDPs, 
including potential age interactions, in greater detail. Sex, head motion 
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Figure 3 The task fMRI data in UK Biobank. (a) The task paradigm temporal model (time running vertically) depicting the periods of the two task types 
(shapes and faces); for more information on this paradigm view, see http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide. (b) Example fitted activation 
regression model versus time-series data (time running horizontally) for the voxel most strongly responding to the ‘faces > shapes’ contrast in a single 
subject (Z = 12.3). (c) Percentage of subjects passing simple voxel-wise activation thresholding (Z > 1.96) for the same contrast. Note the reliable 
focal activation in left and right amygdala. The underlying image is the group-averaged raw fMRI image. (d) Group-averaged activation for the three 
contrasts of most interest, overlaid on the group-average T1 atlas (fixed-effects group average, Z > 100, voxelwise Pcorrected < 10−30). (e) Plot relating 
the 16 tfMRI IDPs to 1,100 non-imaging variables (see Fig. 1g for details). Maximum r2 = 0.018, minimum r2 (passing Bonferroni) = 0.0062. Dotted 
horizontal lines (multiple comparison thresholds) are described in Figure 1g.
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and head size were regressed out of all data before computing cor-
relations (Online Methods). Figure 6b shows Bonferroni-significant  
(Puncorrected < 1.8 × 10−8) associations with brain IDPs, both with 
and without adjusting for age. The task-fMRI versus fluid intelli-
gence associations were unchanged by adjusting for age, whereas all 
other cognition-IDP correlations were approximately doubled, being  
significantly stronger (Pcorrected < 0.005) without age adjustment.

In the symbol digit substitution test, participants replaced sym-
bols with numbers using a substitution key. Strong IDP associations 
were found with two scores: the number of symbol digit matches 
made correctly and the number of symbol digit matches attempted 
in the time allowed (because subjects rarely made mistakes, these 
two scores are highly correlated, r = 0.97). These scores correlated 
negatively with measures of water diffusivity in the corona radiata 
and superior thalamic radiation, and with FA in the posterior fornix  
(consistent with previous sudies27, which may reflect variations 
in tract thickness28). Finally, there was a significant association  
with thalamus volume (right thalamic volume significant, left 
thalamic volume close to significance with r = 0.10), consistent  
with previous findings29. These negative associations likely reflect 
lower cognitive performance with aging and pathology (increased 
diffusivity and atrophy).

In the reaction time test, subjects confirmed whether two abstract 
symbols matched as quickly as possible. The mean time to correctly 
identify matches was found to correlate inversely with left putamen 
volume (right putamen had similar correlation, r = −0.06, but was 
below significance). These negative associations are consistent with 
previous findings30 and indicate that increased volume correlated 
positively with cognitive speed (and negatively with reaction time).

The fluid intelligence score reports how many numerical, logic and 
syntactic questions subjects were able to answer in 2 min. This was 
negatively correlated with the strength of gray matter activation in the 
simple shapes matching task in tfMRI, with no age interaction. The 
shapes matching task incurs low cognitive demand, and it is plausible  
that higher intelligence requires less neural activity for this task, a 
mechanism that has previously been ascribed to minimization of 
cognitive workload31.

All cognitive scores reported above involve processing speed as 
a significant factor, consistent with previous studies27. However, 
the observation that different test scores do not all correlate iden-
tically with each other or with the same brain IDPs suggests that 
there is not a single (speed-related) cognitive factor involved. 
The increases in association strengths when not controlling for 
age suggest that age-related cognitive decline is a major source of 
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Figure 4 The resting-state fMRI data in UK Biobank. (a) Example group-average resting-state network (RSN) atlases from the low-dimensional group-
average decomposition showing 4 of 21 estimated functional brain networks, including the default mode network (red-yellow), dorsal attention network 
(green), primary visual (copper) and higher level visual (dorsal and ventral streams, blue). The three slices shown are (top to bottom) sagittal, coronal 
and axial. (b) The 55 non-artifact components from a higher dimensional parcellation of the brain (axial views). These are shown as displayed by 
the connectome browser (http:// www.fmrib.ox.ac.uk/ukbiobank/netjs_d100), which allows interactive investigation of individual connections in the 
group-averaged functional network modeling. The 55 brain regions (network nodes) are clustered into groups according to their average population 
connectivity, and the strongest individual connections are shown (positive in red, anticorrelations in blue). (c) Plot relating the 76 rfMRI ‘node 
amplitude’ IDPs to 1,100 non-imaging variables (see Fig. 1g for details). Maximum r2 = 0.065, minimum r2 (passing Bonferroni) = 0.0059. (d) Plot 
relating the 1,695 rfMRI ‘functional connectivity’ IDPs to 1,100 non-imaging variables. Maximum r2 = 0.032, minimum r2 = 0.0059. Dotted horizontal 
lines (multiple comparison thresholds) in c and d are described in Figure 1g.

www.fmrib.ox.ac.uk/ukbiobank/netjs_d100
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cross-subject variability for these IDP-cognition associations28. 
Plotting all IDP-cognitive associations (Fig. 6c) revealed that a 
large number of non-age-adjusted associations were stronger than 
the results after age adjustment; below, we show how interpretation 
of such results can be aided further through multivariate analyses.  
These age interactions provide an early indication that UK Biobank 
should provide cognitive biomarkers of clinical relevance as health 
outcomes accumulate.
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Figure 5 Voxel-wise correlations of participants’ age against several white matter measures from the dMRI and T2 FLAIR data. (a) Voxel-wise (cross-
subject) correlation of FA versus age. Group-average FA in white matter is shown in green, overlaid onto the group-average T1. (b) Correlation of MO 
versus age, using the same color scheme. Nearby areas of MO increase are shown in greater detail in f, which also shows the distinct primary fiber 
directions. (c) Correlation of OD versus age, including a reduction in dispersion in posterior corpus callosum. (d) Correlation of ISOVF versus age, 
showing increases in freely diffusing water with age in a broad range of tracts. (e) Voxel-wise correlation of T2 FLAIR intensity showing increased 
intensity with aging in white matter. For a–e, blue and red-yellow show negative and positive Pearson correlation with age, respectively (Pcorrected < 0.05, 
with Bonferroni correction across voxels resulting in significance at r = 0.1 (dMRI n = 3,722; T2 FLAIR n = 3,781). (g) Histograms (across voxels) of 
the voxel-wise age correlation of the correlation maps shown above, with correlation value on the x axis. FA and MO largely decreased with age, whereas 
OD and ISOVF largely increased.

Multivariate associations: modes of population variation
We conducted multivariate analyses using canonical correlation anal-
ysis (CCA)32 combined with independent component analysis (ICA33; 
Figs. 7 and 8, Supplementary Figs. 3–7, and Online Methods). This 
analysis identifies ‘modes’ of population covariation linking IDPs to 
non-imaging measures. Each mode consists of one linear combina-
tion of IDPs and a separate combination of non-imaging measures 
that have a highly similar variation across subjects. The strength of 
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Figure 6 Visualization of 2.8 million univariate cross-subject association tests between 2,501 IDPs and 1,100 other variables in the UK Biobank 
database. (a) Manhattan plot showing, for each of the 1,100 non-brain-imaging variables, the statistically strongest association of that variable with 
each distinct imaging sub-modality’s IDPs (that is, six results plotted for each x axis position, each with a color indicating a brain imaging modality; this 
plot differs from the other Manhattan plots, which show correlations with all IDPs). Whereas the Manhattan plots in Figures 1–4 showed associations for 
each brain imaging modality separately, all associations are depicted in a single plot. (b) List of all IDP-cognitive score associations passing Bonferroni 
correction for multiple comparisons (Pcorrected < 0.05; Puncorrected < 1.8 × 10−8). The first column lists the age-adjusted correlation coefficient, and the 
second shows the unadjusted correlation, both being correlations between a specific brain IDP (fifth column) and a cognitive test score (sixth column). 
The UK Biobank cognitive tests carried out included fluid intelligence, prospective memory, reaction time (shape pairs matching), memorized pairs 
matching, trail making (symbol ordering), symbol digit substitution, and numeric memory. (c) IDP associations with the cognitive phenotype variables 
(the full set of 174 cognitive variables, repeated for each brain imaging modality). Shown behind, in gray, are the same associations without adjustment 
for age, with a large number of stronger associations. Dotted horizontal lines (multiple comparison thresholds) in a and c are described in Figure 1g. 
(d) Scatterplot showing the relationship between adjusted correlations and those obtained without first regressing out the confound variables (each 
point is a pairing of one IDP with one non-brain-imaging variable, 2.8 million points). The grid lines indicate Bonferroni-corrected significance level (as 
described in Fig. 1). (e) Example association between unadjusted white matter volume and fat-free body mass is high (r = 0.56) when pooling across the 
sexes. After adjusting for several variables (including sex), the correlation falls almost to zero.
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involvement of a variable in a given mode is dictated by the vari-
able weight (Fig. 7). Multiple population modes may be identified,  
provided that they describe different (independent) cross-subject 
variation, meaning that the implied association between a given pair 
of variables can vary from mode to mode.

From the current UK Biobank release, we identified nine modes 
that were highly significant (Pcorrected < 0.002, no further modes 
significant at Pcorrected < 0.05). Similar methodology using Human 
Connectome Project (HCP) data previously identified a single statisti-
cally significant mode of population covariation in 461 young healthy 

a b c

edge 295 edge 207nodes 25,19 nodes 21,17
3.02 –2.91

node 6 node 20

–4.91 –3.96

edge 177 edge 345 edge 534nodes 27,20 nodes 34,6nodes 20,6
–4.50 4.086.34

Figure 7 Details of three modes from the doubly-multivariate CCA-ICA analyses across all IDPs and non-brain-imaging variables. IDPs are listed in 
orange and non-brain-imaging variables in black. The lists show the variables most strongly associated with each mode; where multiple very similar 
(and highly correlated) non-imaging variables are found, only the most significant is listed here for brevity. The first column shows the weight (strength 
and sign) of a given variable in the ICA mode, the second shows the (cross-subject) percentage variance of the data explained by this mode, and the 
third column shows the percentage variance explained in the data without the confounds first regressed out. (a) Mode 7 links measures of bone density, 
brain structure/tissue volumes and cognitive tests. (b) Mode 8 links measures of blood pressure and alcohol intake to IDPs from the diffusion and 
functional connectivity data; two functional network connections strongly involved are displayed, with the population mean connection indicated by 
the bar connecting the two nodes forming the connection (red indicates positive mean correlation, blue negative, and the width of the bar indicates the 
connection strength). The group-ICA maps are thresholded at Z > 5, and the colored text is the ICA weight shown in the table list. (c) Mode 9 includes 
a wide range of imaging and non-imaging variables; as well as showing three strong functional network connections, we also show two functional nodes 
whose resting fluctuation amplitude is associated with this mode.
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adults8,34. Our ability to identify more modes than in the HCP data 
set could be a result of the tenfold increase in the number of subjects, 
the larger range of imaging modalities and non-imaging variables, 
and the older ages of subjects.

Although these modes are not guaranteed to reflect biological 
processes, in practice ICA often produces such interpretability35. Of 
the nine modes, some reflected dominant physical factors (for exam-

ple, body size or heart rate), whereas others linked rich subsets of  
non-imaging measures to IDPs. Modes 7–9 are displayed in Figure 7, 
and modes 1–6 are overviewed in Supplementary Figures 3–7. The 
relationships of these multivariate associations to potential confounds 
and variables of interest, including some clinical outcomes, are shown 
in Supplementary Figure 8. Modes 1, 2, 4, 5, 7 and 8 were strongly 
associated with aging, whereas 3, 6 and 9 were not.
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Figure 8 Hypothesis-driven study of age, BMI and smoking associations with subcortical T2*. (a) UK Biobank population-average map of T2*,  
overlaid with the main subcortical structures being investigated. The T2* IDPs reflect individuals’ median T2* values in these regions. The relatively  
low T2* in putamen and pallidum likely reflects greater iron content. (b) BMI regression betas from multiple regressions of R2* (from the ASPS 
study) and T2* (from UK Biobank) against relevant covariates (see c). All variables are standardized so that beta values can be interpreted as (partial) 
correlation coefficients. R2* significance is reported as FDR-corrected P. T2* significance is reported as –log10Puncorrected with the more conservative 
Bonferroni correction (for Pcorrected = 0.05) resulting in a threshold here of 3.6. (c) Full set of univariate and multiple regression betas and significance 
values for all brain regions tested and all model covariates. The regression results are much sparser, reflecting the higher associational specificity 
obtained by reporting unique variance explained.
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Mode 7 primarily linked bone density measures and cognitive 
scores to brain structure and dMRI measures. There is extensive lit-
erature linking volume and diffusivity measures to cognition, but a 
relationship between these measures and bone density has not, to 
our knowledge, been reported. This link could reflect variations in 
physical properties of noninterest that are not fully accounted for by 
de-confounding. However, correlations between low bone density and 
accelerated cognitive decline have been reported36, including associa-
tion of bone density with Alzheimer’s disease37.

Mode 9 exhibited the most complex population pattern (Fig. 7c). The 
most strongly involved non-imaging measures were intelligence, edu-
cation levels and occupational factors; in addition, some physical and 
dietary measures were involved that may reflect socio-economic status 
as a latent factor (for example, cheese intake or time spent outdoors  
in winter). Associated brain IDPs included task fMRI (with a negative 
weight, consistent with the sign of univariate associations), followed 
by a range of functional and structural IDPs.

There was some overlap between modes 7 and 9 in terms of cog-
nitive tasks (for example, symbol digit matches), bone density and 
T1-based brain volumes. However, the fact that CCA-ICA separated 
modes 7 and 9 indicates that they constitute distinct biophysical pat-
terns of variation across subjects; for example, mode 7 correlated 
with age, whereas mode 9 did not. The broader range of non-imaging  
measures involved in mode 9, and the ability to interpret many of 
them in terms of positive or negative life factors, is reminiscent of 
the single mode previously reported from HCP data8,34. That mode 
resembled the well-established observation of strong correlations in 
subject performance across a broad range of cognitive and behavioral 
tests (the general intelligence g-factor), but also included demographic 
and life factors. However, the correspondence between the mode 9 
reported here and the previous HCP mode is not perfect. This may be 
a result of key differences in the HCP and Biobank data sets, including 
different non-imaging measures, the use of only rfMRI in the HCP 
analysis, the different cohort profiles (for example, age range) and the 
ability to separate more modes from the larger Biobank cohort.

Illustrative hypothesis-driven study
The Austrian Stroke Prevention Study (ASPS) recently reported asso-
ciations between aging, smoking and body mass index (BMI) with 
gray matter T2* in 314 participants (38–82 years)38, likely reflecting 
iron accumulation in local tissue13. We sought to replicate several of 
their key findings as a demonstration of a hypothesis-led investiga-
tion. The ASPS reported R2*, which is the reciprocal of the T2* value 
that we estimated in UK Biobank; thus, we expected T2* associations 
with opposite signs to those reported by ASPS. The main results from 
ASPS in deep gray matter structures were that BMI was generally the 
strongest determinant of R2* and was significantly related to R2* in 
amygdala (beta = 0.23, PFDR = 0.009) and hippocampus (beta = 0.14, 
PFDR < 0.0001). Further associations with R2* (averaged across sub-
cortical structures) were found for age (beta = 0.03, PFDR = 0.027) and 
recent smoking level (beta = 0.02, PFDR = 0.001). No equivalent asso-
ciations were found for sex or hypertension. The ASPS conducted uni-
variate correlations and multiple regressions to identify both shared 
and unique variance in the associations, using FDR correction. On 
the basis of these results, we hypothesize negative association between 
T2* in subcortical structures with BMI, age and smoking.

We conducted similar analyses, applying univariate correlations 
and multiple regressions against a similar set of covariates to ASPS 
(Fig. 8). The regressions used the n = 4,891 subjects with complete 
data in all IDPs and covariates. To maximize the complementarity of 
information content between the univariate correlations and multiple 

regressions, we applied no adjustments for factors such as age and sex 
in correlations, whereas we included these factors as confound covari-
ates in the multivariate regressions. We applied Bonferroni multiple 
comparisons correction across covariates and brain regions, resulting 
(for Pcorrected < 0.05) in a –log10Puncorrected threshold of 3.6.

Our results were highly concordant with ASPS. BMI was signifi-
cantly associated with T2* in amygdala (averaged across left and right: 
beta = –0.07, –log10Puncorrected = 3.9) and hippocampus (beta = −0.15, 
−log10Puncorrected = 17.0; for comparison, FDR correction would result 
in PFDR < 10−10). Individual subcortical BMI associations are shown 
in Figure 8b. In accordance with our hypothesis, the signs of regres-
sion betas are universally negative with T2* from UK Biobank data. 
Associations with T2* were found for age in thalamus, caudate and 
putamen (Fig. 8c) and for smoking status in caudate, putamen and 
right pallidum (beta ranging from –0.03 to –0.1). Association of T2* 
with sex was only found in right amygdala, and no association was 
found for hypertension.

The increased specificity of multiple regression is notable for many 
of the tests, for example, a significant univariate association of T2* 
with cholesterol disappeared after controlling for the other covariates. 
Similarly, for T2* in hippocampus and amygdala, many of the associa-
tions with age, sex, BMI and other factors became much weaker after 
controlling for all variables, particularly the amount of head motion. 
Despite the fact that this motion was recorded from the functional 
data (not the T2* data), it is likely a general indicator of head motion, 
and these results illustrate why interpretation of imaging associations 
requires care. For example, BMI could be predictive of head motion 
(for example, comfort in the scanner) while also potentially relating 
to biophysical parameters of deeper interest.

The BMI and smoking associations with T2* are found in distinct 
subcortical structures. Notably, this distinction is reflected in the CCA-
ICA results, where these associations appear in separate population 
modes. The association of T2* in caudate and putamen with smok-
ing (and more weakly with alcohol; Fig. 8c) was highly concordant  
with CCA-ICA mode 5 (Supplementary Fig. 4b), and was associated 
with aging (Fig. 8c and Supplementary Fig. 8). The association of 
T2* in hippocampus and amygdala with BMI was highly concordant 
with CCA-ICA mode 3 (Supplementary Fig. 3c), a distinct mode of 
population covariation that was not associated with aging (in either 
analysis). Neither mode includes cognitive test scores, suggesting that, 
although these associations clearly relate to biological processes, they 
may be only indirectly linked to cognitive health.

DISCUSSION
Challenges of population imaging
UK Biobank data is openly available to researchers, including non-imag-
ing experts. However, imaging data is considerably more complex than 
most of the existing UK Biobank measures. Extensive post-processing is 
required to align images across subjects and remove artifacts. Moreover, 
information is usually encoded across multiple voxels, requiring further 
processing to extract relevant features. Even with carefully prepared 
IDPs, meaningful interpretation requires care because MRI is generally 
an indirect measure of the biology of interest. Apparent structural atro-
phy can be susceptible to misinterpretation39, fMRI signals can reflect 
vascular properties rather than neural activity40, and dMRI is sensitive 
to many aspects of tissue microstructure14. A final challenge is that data 
sizes have become extremely large, requiring ‘big data’ techniques; the 
brain imaging data in UK Biobank will ultimately surpass 0.2 PB even 
without data inflation during post-processing.

Large cohorts face the further challenge that statistically signifi-
cant associations are identified even when their explanatory power is 
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small. In our data set, significance was reached at a correlation of just 
r ≈ 0.1, that is, 1% of population variance explained41 even with mul-
tiple comparison correction. Large genome-wide association studies 
(GWAS) face this challenge, where it is accepted that small effect 
sizes can be meaningful, particularly when multiple factors combine 
to create a large effect. However, in GWAS, genetic variants can be 
interpreted as causal factors (whether direct or indirect42), whereas 
apparent associations across IDPs and non-imaging phenotypes could 
result from a shared latent (non-measured) cause. For example, edu-
cation level could result in a dietary factor associating with a brain 
IDP, despite no direct causal connection between diet and IDP. This 
danger is inflated with larger subject numbers, but may be mitigated 
by the rich life factor and biological variables that can be controlled 
for or used to match subgroups. Population variances explained in the 
pairwise associations reached maxima of around 5% (Supplementary 
Fig. 2), but these were higher with the multivariate analyses (up to 
20–50% variance explained in the most highly involved variables in 
population modes), partly reflecting increased sensitivity gained 
when appropriately combining across related variables.

The importance of accounting for relevant confounds is exem-
plified in Figure 6e, which displays a strong apparent association 
between total white matter volume and fat-free body mass (one scatter  
point per subject) without de-confounding. In fact, this associa-
tion is largely driven by the average differences in body mass and 
head size between sexes and disappears after adjusting for sex, age 
and head size. This is an example of Simpson’s paradox43, in which 
suboptimal pooling across variables (here, sex) results in a mis-
leading association. Other pitfalls include failing to consider study 
population selection bias44 and inappropriate de-confounding of 
variables that are caused by (and not feeding into) the variables of 
interest45. Although there is no guarantee that UK Biobank is an 
unbiased sample of the full population, that does not imply that 
studies using subsets of the data have to retain any biases (although 
it is again still possible for bias to arise44); one important aspect of 
study design will be the method of subselection of Biobank subjects 
to feed into an analysis. In the case of focused hypothesis testing, it 
is likely that carefully selected subgroups of subjects should be used. 
For example, once a group of subjects is identified with a clinical 
diagnosis, it is likely that optimal sensitivity and interpretability will 
require a control subgroup that is matched over many relevant factors  
(for example, sex, age and relevant life factors not appearing in the 
predictive model).

Future studies might seek to find causalities between variables, 
for example, using structural equation modeling, Bayes Nets or 
nonlinear/non-Gaussian methods46. The dangers of inferring causali-
ties from observational data sets such as UK Biobank are well known; 
the inclusion of genotype and other ‘instrumental’ measures enable 
analyses such as Mendelian randomization, although important cave-
ats must be considered42. The safest way to confirm causal results 
discovered from such observational data sets is to use such results to 
form hypotheses for new focused interventional studies.

The mapping of disease associations and population patterns  
(for example, learned from UK Biobank data) onto individuals will be 
an important long-term goal. For example, population distributions 
of imaging measures and health outcomes can be learned and used 
to form patient-specific prior distributions to combine with meas-
ures from a new patient. Although this might not provide statistical  
certainty for a diagnosis or interventional recommendation, it should 
allow single-patient imaging to be used in a similar way to current 
state-of-the-art patient-tuned genetic testing.

Data analysis in population imaging
Our analyses demonstrate some of the possibilities offered by the 
UK Biobank resource. Focused association studies may select just 
two variables to investigate, such as one IDP correlated against one 
life factor, genetic marker, physical assay or health outcome. More 
complex analyses could model a larger number of variables simulta-
neously, for example, looking to predict health outcome from mul-
tiple linear regression against several predictor variables. Nonlinear 
methods (for example, penalized regression or data-driven feature 
selection)22 could enable use of much larger number of predictor 
variables. A further extension could identify nonlinear interactions 
between predictor variables, for example, considering an imaging 
measure, a life factor and an interaction term between the two as three 
distinct predictors. An even more complex analysis might predict 
multiple outcome variables, looking for ‘doubly multivariate’ associa-
tions between two or more sets of variables; the CCA-ICA analyses 
presented above are an example of this. Finally, imaging measures 
may in some cases be more sensitive or specific than clinical symp-
toms47, thereby providing proxies for healthcare outcomes and/or 
enabling clustering of patients that is more predictive of prognosis 
or therapeutic response48.

Pairwise correlation analyses result in simple outcomes that require an 
understanding of the caveats in imaging-derived measures. Data-driven 
multivariate analyses identifying associations between sets of variables 
have complementary benefits, including improved sensitivity to biologi-
cal processes and a streamlined set of results compared with millions of 
univariate associations. Furthermore, multivariate analyses can separate 
distinct biological processes with opposing relationships between vari-
ables. For example, our CCA-ICA analysis revealed one aging-related 
process that involved changes in heart rate and fMRI measures (mode 
4), whereas another aging-related process related blood pressure and 
white matter microstructure (mode 8). A simple correlational analysis 
would show associations between all of these factors, including even 
those that appeared in separate modes (for example, fMRI and white 
matter changes). In addition, as with multiple regression, simultaneous 
identification of multiple modes of association reduces the unexplained 
residual variance (effectively data ‘de-noising’).

Multivariate analyses of multi-modal data such as UK Biobank 
enable discovery of (potentially complex) clinical phenotypes. This 
is a powerful alternative to diagnostic categories that rely on clinical 
symptoms that do not map cleanly onto underlying disease mecha-
nisms. For many complex diseases, the discovery of distinct mecha-
nisms and/or subdiseases that are currently conflated may be unlikely 
to occur solely through symptom-based investigations. Discovering 
relevant population axes and subgroups on the basis of imaging, genet-
ics and other objective markers may therefore be expected to increase 
our understanding of the etiology and pathogenesis of a wide variety 
of diseases. For example, this concept is at the heart of the recently 
proposed Research Domain Criteria (RDoC) in psychiatry48.

Population imaging landscape
In the early 2000s, several ambitious studies built cohorts consisting 
of thousands of subjects. Several recent brain imaging studies are aim-
ing to image tens of thousands of subjects, including the Maastricht 
Study (n = 10,000)49, the German National Cohort (n = 30,000)50 and 
the Rhineland Study (n = 30,000). In addition to having even larger 
numbers, UK Biobank will benefit from the breadth of organ systems 
imaged, the highly multi-modal brain protocol and the existing rich 
phenotyping. A longitudinal component is planned for a subset of the 
UK Biobank imaging participants (n = 10,000), as in the Rhineland 
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and German National Cohort studies. Most of these studies use iden-
tical MRI scanners at a small number of dedicated sites, with the goal 
of maximizing data homogeneity within the study. A future challenge 
to further leveraging these large data sets is to develop analysis tools 
that can harmonize data across these studies for combined analyses, 
where there could be considerable benefit in focusing on harmoniza-
tion of a few very large cohorts.

Even with just 5% of the eventual cohort size, our results dem-
onstrate the statistical benefits that are conferred by large numbers. 
However, the primary rationale for the size of the study is not to boost 
statistical power across 100,000 subjects, but rather to provide pro-
spective imaging data that are suitable for discovering early markers 
and risk factors for as broad a set of diseases as possible. For some rare 
diseases with few established risk factors, this approach is uniquely 
suited to discovery of pre-symptomatic markers; for example, 50–100 
imaging participants are expected to develop sporadic amyotrophic 
lateral sclerosis (ALS) by 2027. This rich imaging addition to the 
ongoing UK Biobank study will provide scientists with insights into 
the causes of brain disease, provide markers with predictive power 
for therapeutic interventions and advance noninvasive imaging-based 
screening for preventative healthcare.

METhODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METhODS
Protocol overview. Imaging protocols were designed by the UK Biobank Imaging 
Working Group (http://www.ukbiobank.ac.uk/expert-working-groups), in con-
sultation with a large number of brain imaging experts (listed in the acknowl-
edgments). MRI provides many imaging modalities offering complementary 
information. As part of this consultancy, a number of modalities were determined 
to be infeasible or lower priority for a range of reasons. Considerations included 
time constraints, generalizability, feasibility of automated analysis, and exist-
ence of robust, well-tested acquisition methods. The advisory network therefore 
decided not to include quantitative relaxometry, MR spectroscopy or angiogra-
phy. Arterial spin labeling is currently being piloted, as described below.

To maximize data compatibility, three dedicated imaging centers will have 
identical scanners with fixed platforms (that is, no major software or hardware 
updates throughout the study). Each center is equipped with a 3T Siemens Skyra 
(software platform VD13), 1.5T Siemens Aera (VD13), carotid ultrasound and 
dual energy X-ray absorptiometry (DEXA). Brain imaging is being conducted 
on the 3T system using a 32-channel receive head coil.

Key acquisition parameters for each modality are summarized in 
Supplementary Table 1, grouped according to primary modality categories 
(structural MRI, dMRI and fMRI). Order of acquisition was optimized in con-
sideration of subject compliance, assuming subject motion might increase over 
the scan (favoring early acquisition of the T1 due to its central importance; for 
example, the processing pipeline cannot run without the T1) and subject wake-
fulness might decrease (favoring early acquisition of fMRI). The order is: (1) T1,  
(2) resting fMRI, (3) task fMRI, (4) T2 FLAIR, (5) dMRI, (6) swMRI.

Further protocol details are available at http://biobank.ctsu.ox.ac.uk/crystal/
refer.cgi?id=2367 and further description of post-processing pipelines and data 
outputs included in the first data release are available at http://biobank.ctsu.ox.ac.
uk/crystal/docs/brain_mri.pdf. All software used in these pipelines is freely avail-
able51,52 and full pipeline processing scripts will shortly be publicly available.

The processing pipeline used for the initial data release was primarily based on 
tools from FSL (the FMRIB Software Library51), but it will be gradually expanded 
to utilize a broader range of methods and software, where this will increase the 
quality, robustness and scope of IDPs generated. For example, one high prior-
ity is to adapt the Human Connectome Project pipelines53 to provide cortical 
surface modeling.

The intention is that non-imaging experts will be able to use the IDPs directly 
without having to become expert in the complexities of data processing, although 
we encourage engagement with imaging experts in light of the numerous and 
subtle caveats and confounds associated with interpreting these data.

Data access requests from all academic or commercial researchers (with no 
exclusive or preferential access) are processed by the UK Biobank’s Research 
Access Administration Team and approved relatively rapidly provided that they 
fulfill UK Biobank’s aims of supporting health research in the public interest. 
Researchers’ institutions then sign a Material Transfer Agreement agreeing not to 
attempt to identify any participant, and to return any derived data (for example, 
new IDPs) to UK Biobank, to be made available to other approved researchers 
after an agreed ‘embargo’ period (to allow findings to be published or IP pro-
tected by the researchers). Thus, while the first set of IDPs described here from 
internally commissioned research is being made available immediately, the range 
of IDPs is expected to grow rapidly as additional contributions from the wider 
user community are added.

Protocol considerations. Design of the brain imaging protocol was conducted 
through broad consultation with neuroimaging experts and required careful bal-
ance of a range of considerations, often specifically relating to the high through-
put nature of UK Biobank. In setting up the pilot protocol, the primary challenge 
was to achieve the target of one participant scanned every 36 min without serious 
compromise to data quality compared to research protocols that might conven-
tionally require up to an hour of scan time. Despite these tight time constraints, 
we aimed to include as many MRI modalities as possible, to take advantage of 
the full richness of information that can be provided by MRI. Here, we high-
light the primary considerations that required a different approach from more  
conventional imaging studies.

•  With each additional minute of scanning per subject effectively costing an 
additional ~£1million, there is enormous value associated with seemingly 

small efficiency savings. We recovered several minutes of scan time by  
systematically minimizing the overheads associated with subject placement, 
scan prescription, and calibration measurements. For example, corrections 
to the static magnetic field homogeneity (shimming) and strict enforcement 
of a single shim calibration harvested 2 min (changing system defaults to 
improve and accelerate shimming), which is equivalent to the scan time 
associated with some of the included modalities.

•  Tight imaging FOVs (fields of view, the physical size of the imaged  
volume) are in general favorable to reduce scan time; however, these  
restrictions exclude subjects with larger heads or brains. For UK Biobank, 
even a ‘conservative’ FOV that includes 99% of the population will exclude 
1,000 participants. As detailed statistics on brain size (as distinct from head 
size) were not available in the literature, we conducted a study of population 
brain size54 that (in conjunction with optimal slice angling) enables our 
FOVs to target 99.9%.

•  It is critically important that all analyses are automated. This translates to 
an additional role for certain imaging modalities beyond their intrinsic 
information content. Thus, although we considered methods for reduc-
ing scan time for T1-weighted structural scans while retaining coverage  
and resolution (for example, elliptical sampling with consequent image  
blurring), this was deemed an unacceptable risk given the central role of  
the T1 to cross-subject and cross-modal alignment for most processing  
pipelines, including that implemented here for the initial data release.

•  The EPI (echo-planar imaging) acquisitions for fMRI and dMRI result 
in significant image distortion that creates local misalignment in certain 
brain regions. Correction of this requires measurement of the magnetic field  
inhomogeneities that cause distortion. Two types of measurements are  
possible: a non-EPI gradient-echo acquisition with two echoes (conventional 
field map) or two EPI-based spin echo acquisitions with opposite phase 
encode direction55. We chose the latter, which can be incorporated into  
the dMRI protocol as additional b = 0 scans to reduce acquisition time  
(total acquisition time ~30 s).

•  To provide data with as rich and broad a range of applications as possible, we 
include imaging modalities that are not yet widely used in clinical practice, 
such as fMRI and dMRI. These modalities have demonstrated mechanis-
tic and biological insights, and will hopefully see greater clinical take-up 
in the future, in part because of projects such as UK Biobank. We took 
advantage of recent advances in acquisition, largely developed as part of the 
Human Connectome Project, to obtain research quality data in limited time. 
Specifically, simultaneous multi-slice (or multiband, MB) acquisitions56–59 
that enable rapid fMRI and dMRI without sacrificing statistical robustness 
or directions/b-values (ref. 60), respectively. Without these accelerations, a 
seven-minute dMRI scan of the same spatial resolution would have been 
limited to ~32 directions and a single shell, precluding NODDI16 and other 
more advanced biological modeling.

•  After early piloting, a clinical T2/PD-weighted acquisition was removed 
from the protocol. This decision reflected the limited relevance to UK 
Biobank goals (given the inclusion of the higher-quality and more bio-
logically informative T2 FLAIR) and the value in recovering this scan time  
(just over 1 min).

•  One shortcoming of the current protocol is the lack of a direct measure of 
neurovascular health. We are piloting a protocol change to include a 2-min 
perfusion scan (using arterial spin labeling). This would require reducing 
task fMRI to 2 min; while this is an extremely short task, early analyses 
(using truncated copies of existing initial tfMRI data sets) predict that it 
will be sufficiently robust.

•  A major ethical question in studies of this nature relates to identification 
and handling of incidental findings of previously unknown pathology. The 
procedure to be followed in UK Biobank has been considered in great depth 
with major external ethical, legal and clinical radiology bodies, and with 
the funders and their external review group. An assessment of different 
approaches to the identification of incidental findings and the impact of their 
feedback on participants and the health service has been conducted as part 
of the pilot phase of UK Biobank’s imaging project, and will be published 
separately. Based on its results and the deliberative process undertaken with 
external experts, the UK Biobank protocol for dealing with incidental find-
ings does not involve the routine review of all scans for potential pathology 

www.ukbiobank.ac.uk/expert-working-groups
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
http://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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by radiologists. Instead, if a radiographer incidentally identifies evidence 
of potentially serious pathology (that is, likely to threaten life span, quality 
of life or major body functions) during the imaging process then a formal 
radiologist review is undertaken and, if it is confirmed as potentially serious, 
feedback is given to the participant and their doctor.

•  Informed consent is obtained from all UK Biobank participants; ethical pro-
cedures are controlled by a dedicated Ethics and Guidance Council (http://
www.ukbiobank.ac.uk/ethics) that has developed with UK Biobank an 
Ethics and Governance Framework (given in full at http://www.ukbiobank.
ac.uk/wp-content/uploads/2011/05/EGF20082.pdf), with IRB approval also 
obtained from the North West Multi-center Research Ethics Committee.

•  Subjects are excluded from scanning according to fairly standard MRI safety/
quality criteria, such as exclusions for metal implants, recent surgery, or 
health conditions directly problematic for MRI scanning, such as problems 
hearing, breathing or extreme claustrophobia.

•  Once the second and third imaging centers are complete and running, UK 
Biobank will use phantom objects and traveling volunteers to confirm qual-
ity and consistency across sites.

Structural imaging. The T1 structural protocol is acquired at 1mm isotropic 
resolution using a three-dimensional (3D) MPRAGE acquisition, with inver-
sion and repetition times optimized for maximal contrast. The superior-inferior  
field-of-view is large (256 mm), at little cost, in order to include reasonable 
amounts of neck/mouth, as those areas will be of interest to some researchers  
(for example, in the study of sleep apnea). Pre-processing of this modality 
included removal of the face (which was deemed important to subject ano-
nymization for the standard data dissemination), brain extraction (removal of  
non-brain tissues from the image), linear alignment to the standard MNI152 
brain template61 and nonlinear warping to this template62 to maximize cor-
respondence across individuals in light of significant cross-subject variation 
in brain structure. These alignments are used throughout the majority of the 
processing pipeline for other modalities.

T1 images are further analyzed to estimate volumes of a range of tissues and 
structures in each subject, which may reflect atrophy due to age and disease, as 
well as normal variation due to (for example) use-dependent plasticity. Images are 
segmented into tissue types (gray matter, white matter and cerebrospinal fluid)63. 
Cortical gray matter volume is estimated, comparing the segmented gray matter 
to an atlas reference (where the external skull surface is used to normalize for 
head size)64. Sub-cortical volumes are estimated65, using population priors on 
shape and intensity variation across subjects. T1-based IDPs are generated for 
the volumes of major tissue types of the whole brain and for specific structures 
(primarily sub-cortically).

Too much reliance on spatial registration could limit the usefulness or accuracy 
of some IDPs. This is in part why many of the IDPs are in fact generated from 
within-subject analyses that do not depend on exact voxelwise spatial alignment 
to standard space (or between subjects): for example, 283 of the 715 structural 
and diffusion IDPs do not rely on exact spatial alignment and are carried out in 
the original space of each subjects’ data.

The T2 protocol uses a fluid-attenuated inversion recovery (FLAIR) contrast 
with the 3D SPACE optimized readout66. This shows strong contrast for white 
matter hyperintensities. An automated pipeline for delineating these hyperin-
tensities is currently being developed and future data releases will include IDPs 
reflecting the lesion ‘load’.

The swMRI scan uses a 3D gradient echo acquisition at 0.8x0.8x3mm resolu-
tion, acquiring two echo times (TE = 9.4 and 20 ms). Anisotropic voxels can 
enhance certain contrast mechanisms, particularly for vascular conspicuity due 
to through-plane dephasing effects, but are less ideal for other susceptibility-
based processing. Ultimately, however, this choice was motivated by the desire for 
whole brain coverage in the face of very limited scan time (2.5 min). Signal decay  
times (T2*) are estimated from the magnitude images at the two TEs, and the  
generated IDPs are the median T2* estimated within the various subcortical 
regions delineated from the T1 processing. Venograms are generated through 
nonlinear filtering of the magnitude and phase images12, which produces 
enhanced conspicuity of medium and large veins. Automated segmentation of 
microbleeds and venograms would provide significant value, but to our knowl-
edge robust tools for this are not yet available; future pipeline versions can hope 
to include such analyses. Future work will also consider whether this data will 

support quantitative susceptibility mapping, which would provide further  
information on tissue constituents as discussed in the main text.

diffusion imaging. Diffusion data is acquired with two b-values (b = 1,000 and 
2,000 s/mm2) at 2-mm spatial resolution, with multiband acceleration factor of 3 
(three slices are acquired simultaneously instead of just one). For each diffusion-
weighted shell, 50 distinct diffusion-encoding directions were acquired (covering 
100 distinct directions over the two b-values). The diffusion preparation is a 
standard (monopolar) Stejskal-Tanner pulse sequence. This enables higher SNR 
due to a shorter echo time (TE = 92 ms) than a twice-refocused (bipolar) sequence 
at the expense of stronger eddy current distortions, which are removed using the 
Eddy tool67 (which also corrects for static field distortion and motion68).

Both diffusion tensor and NODDI models are fit voxel-wise, and IDPs of the 
various model outputs are extracted from a set of white matter tracts. Tensor 
fits utilize the b = 1000 s/mm2 data, producing maps including fractional ani-
sotropy, tensor mode and mean diffusivity. The NODDI16 model is fit using the 
AMICO (Accelerated Microstructure Imaging via Convex Optimization) tool52, 
with outputs including intra-cellular volume fraction (which is often interpreted 
to reflect neurite density) and orientation dispersion (a measure of within-voxel 
disorganization). For tractography, a parametric approach is first used to estimate 
fiber orientations. The generalized ball & stick model is fit to the multi-shell data, 
estimating up to three crossing fiber orientations per voxel17,69. Tractography 
is then performed in a probabilistic manner to estimate white matter pathways 
using the voxel-wise orientations.

Cross-subject alignment of white matter pathways is critical for extracting 
meaningful IDPs; here, two complementary approaches are used. The first used 
tract-based spatial statistics (TBSS)18,70, in which a standard-space white matter 
skeleton is mapped to each subject using a high-dimensional warp, after which 
ROIs are defined as the intersection of the skeleton with standard-space masks 
for 48 tracts71 (see the JHU ICBM-DTI-81 white-matter labels atlas described 
at http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases for definitions of the tract regions 
and names). The second approach utilizes subject-specific probabilistic diffu-
sion tractography run using standard-space protocols to identify 27 tracts18; in 
this case, the output IDPs are weighted by the tractography output to emphasize 
values in regions that can most confidently be attributed to the tract of interest. 
Currently, no structural connectivity estimates from the diffusion tractography 
are provided as IDPs, but the probabilistic maps are available and future work will 
generate measures similar to those provided for resting-state fMRI.

Functional mRI. Task and resting-state fMRI use the same acquisition  
parameters, with 2.4-mm spatial resolution and TR = 0.735 s, with multiband 
acceleration factor of 8. A ‘single-band’ reference image (without the multiband 
excitation, exciting each slice independently) is acquired that has higher tissue-
type image contrast; this is used as the target for motion correction and align-
ment. For both data sets, the raw data are corrected for motion72 and distortion55 
and high-pass filtered to remove temporal drift.

The task scan used the Hariri faces/shapes ‘emotion’ task21,73, as implemented in 
the HCP22, but with shorter overall duration and hence fewer total stimulus block 
repeats. The participants are presented with blocks of face or shape trials and asked 
to decide which of two faces (or shapes) presented on the bottom of the screen 
match the face (or shape) at the top of the screen. The faces have either angry or 
fearful expressions. The ePrime stimulus script is available for download (http://
biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1462). Task-induced activation is 
modeled with FEAT, including auto-correlation correction74, using five activation  
contrasts. Of these, the three activation contrasts of most interest (shapes, faces 
and faces>shapes) are used to generate output measures, including two IDPs 
for the faces-shapes task (one including all voxels above a group-level fixed-
effects Z > 120, and one including only the amygdala regions above threshold).  
IDPs corresponding to both percent signal change and statistical significance  
(Z statistics) are generated.

During resting-state scans, subjects are instructed to keep their eyes fixated 
on a crosshair, relax and ‘think of nothing in particular’. Resting-state networks 
are identified using ICA (independent component analysis33,75), which identifies 
components within the data that are spatially independent (where a compo-
nent comprises a spatial map and a single associated time course). Following the  
pre-processing described above, resting-state fMRI data for each subject is fur-
ther ‘cleaned’ using an ICA-based algorithm for automatically identifying and 

http://www.ukbiobank.ac.uk/ethics
http://www.ukbiobank.ac.uk/ethics
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/05/EGF20082.pdf
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1462
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1462
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removing structured artifacts76. This data is fed into group-level ICA (including 
an initial group-level dimensionality reduction77), which is used to parcellate the 
data set into sets of 25 and (separately) 100 spatially independent components. 
Where a small (<30) number of components is estimated78, it is common to con-
sider each component as a separate ‘network’ in its own right; each component 
will often include several non-contiguous regions, all having the same time course 
(according to the model). If a higher number of components is estimated79, these 
are more likely to be smaller regions (parcels), which can then be considered as 
nodes for use in network analysis80, where the spatial maps are used to define 
subject-specific time courses (the first stage of dual regression1). These time 
courses are used to estimate the size of signal fluctuation in each node, as well 
as to estimate connectivity between pairs of nodes using L2-regularised partial 
correlation81. The connectivity estimates are provided as IDPs at both parcellation 
dimensionalities (25 and 100 nodes); after removal of group-ICA components 
considered to be artifactual (that is, relating either to scanning artifacts, or to non-
neuronal biophysical processes such as cardiac fluctuations and head motion), 
this results in 21 and (respectively) 55 nodes left for forming the IDPs such as 
network matrices (functional connectivities between pairs of nodes).

Quality control. To date, raw data and pipeline outputs have been manually 
checked for gross problems of quality and robustness, with problematic data 
tagged and removed from pipeline outputs; see main text for results on propor-
tions of usable data in the different modalities. However several quality-related 
IDPs are automatically generated by the pipeline (for example, number of outlier 
slices in the dMRI data, and measures of signal-to-noise ratio in the various 
modalities), and these can be used to help automatically identify problematic 
data. An expanded set of such quality measures is being produced, in addition to 
an automated machine learning system for flagging problematic data on the basis 
of the many IDPs and quality measures; future versions of the pipeline and data 
releases will benefit from the results of these ongoing developments.

Statistics. The two sections below describe the statistical analysis carried out 
using IDPs and non-brain-imaging measures. As described below, univariate 
statistics were primarily carried out using Pearson correlation (see details below 
regarding Gaussian-distribution normalization and linear removal of confound 
effects) and multivariate statistics were carried out using a combination of canoni-
cal correlation analysis and independent component analysis (with permutation 
testing used to identify the significant number of components estimable). As 
discussed in the main text, the primary rationale for the size of the study is not to 
boost statistical power across 100,000 subjects, but rather to provide prospective 
imaging data suitable for discovering early markers and risk factors for as broad 
a set of diseases as possible, both rare and highly prevalent. Hence while calcula-
tions have been made to estimate the expected numbers of subjects developing 
different diseases over coming years (see introductory section of main text), no 
statistical methods were used to pre-determine sample sizes for any one specific 
disease, given that individual disease sample sizes are not prospectively con-
trolled, and given the very broad expected set of future tests between different 
imaging measures and different diseases that will be ultimately applied from 
this prospective long-term resource. Details on significance testing and multiple 
comparison corrections are included in the two sections below.

A Supplementary methods checklist is available.

Simple associations between brain IdPs and other measures. We report sim-
ple correlation analyses between each of the 2,501 brain IDPs and each of 1,100 
other variables extracted from the UK Biobank database (these other variables 
are mostly not derived from imaging, though some do come from the non-brain 
imaging modalities); for the list of general classes of these variables, see Figure 6a,  
and for many examples of individual variables, see the lists associated with the 
CCA-ICA modes presented in Figure 7 and Supplementary Figures. The ini-
tial set of variables extracted from the UK Biobank database was automatically 
reduced to those (1,100 variables) containing sufficient numbers of valid (non-
missing) data entries, using very similar selection rules to those applied in the 
recent CCA-based analysis of Human Connectome Project data34. Some variables 
are defined (in the UK Biobank database) such that the numerical encoding is 
the inverse of what one might naturally assume - for example in the variable 
‘Qualifications’, higher numbers refer to lower levels of educational qualifica-
tions. In such cases we have inverted the sign of the ICA weightings printed in 

the figures, for ease of interpretation. Further, some variables are categorical, 
with no clear quantitative meaning to the values (for example, ‘Transport type 
to work’); where we find an apparent association, this can be considered to be 
indicative of a real association (one might think of the analysis therefore as an 
over-conservative poor implementation of an ANOVA), but interpretation of the 
sign of the association clearly needs care. The analysis used data from the first 
5,430 subjects scanned and having usable imaging data: age range 44–78 years 
(IQR 56–68 years); 53% of subjects were female.

Eight confound variables are generated: age, age2, sex, age × sex, age2 × sex, 
average head motion during tfMRI, average head motion during rfMRI and head 
size. To enforce Gaussianity, all confound variables, IDPs and non-IDP vari-
ables are first passed through a rank-based inverse Gaussian transformation; this 
improves the robustness of correlations (for example, to avoid undue influence 
of potential outlier values). The confounds are then regressed out of all IDPs 
and non-IDP variables to reduce the risk of finding nonmeaningful associations. 
For example, head motion corrupts imaging data in complex ways26, and also 
correlates with some diseases and with aging (r = 0.15 in this data); hence, if not 
adjusted for, uninteresting associations would likely arise. However, some meas-
ures may have both biologically interesting associations with IDPs, and also act 
as imaging confounds. For example, abnormal heart rate or blood pressure could 
alter the fMRI signal through disrupted cerebral auto-regulation (independent 
of any changes to neural activity)40, but cardiovascular pathology could also be 
related to neurological pathology. Similarly, overall brain size and gray matter 
thickness IDPs are sensitive simple markers of aging and disease; however, these 
properties can also affect other IDPs by changing the mixture of tissue types in an 
imaging voxel, creating an apparent age/disease dependence that is driven by the 
volume of tissue rather than the properties of a given tissue type (such as fMRI 
activation or white matter microstructural properties). It is therefore important 
to interpret apparent associations carefully.

The full set of 2.8 million (2,501 × 1,100) Pearson correlations is then esti-
mated and corrected for multiple comparisons. Bonferroni correction, which is 
likely to be somewhat conservative in such situations, due to non-independence 
across variables tested, resulted in Pcorrected < 0.05 being equivalent to requiring 
Puncorrected < 1.8 × 10−8. An alternative popular approach for multiple comparison 
correction is false discovery rate (FDR)82; we use the more conservative FDR 
option (making no assumption of variable dependencies83), resulting here in 
requiring Puncorrected < 3.8 × 10−5. These two threshold levels are shown with 
dotted lines in all Manhattan plots in the main figures.

multivariate associations between brain IdPs and other measures. In the 
example multivariate analyses shown in Figures 7 and 8, canonical correlation 
analysis (CCA32) combined with independent component analysis (ICA33) is 
used to identify several ‘modes’ of population covariation which link multiple 
brain IDPs to sets of other Biobank variables. This is very similar to the method-
ology used recently to identify a single mode of population covariation between 
imaging measures and many behavioral and lifestyle measures in data from 461 
subjects in the Human Connectome Project8,34.

IDP and non-IDP variables are prepared as for the univariate correlation analy-
ses described above, resulting in a brain-IDP matrix of size 5,034 × 2,501 (subjects 
× IDPs) and a non-IDP matrix of size 5,034 × 1,100 (subjects × non-IDP variables). 
The intention is to feed these into CCA in order to identify population modes 
linking multiple variables from both matrices. However, in order to avoid an over-
determined (rank deficient) CCA solution, we first compress both matrices along 
the respective phenotype dimension to 200 columns (that is, much smaller than the 
numbers of subjects). This was done by separately reducing each matrix to the top 
200 subject-eigenvectors using PCA. To achieve this while avoiding the problem of 
missing data, we use the approach detailed recently34 of estimating first a pseudo-
covariance matrix ignoring missing data, projecting this onto the nearest valid 
(positive definite) covariance matrix, and then carry out an eigenvalue decomposi-
tion. The two resulting (IDP and non-IDP) matrices of size 5,034 × 200 are then 
fed into standard CCA (‘canoncorr’ in Matlab), resulting in 200 CCA modes being 
estimated. The CCA aims to identify symmetric linear relations between the two 
sets of variables. Each significant CCA mode identifies a linear combination of 
IDPs and a linear combination of non-IDPs, where the variation in mode strength 
across subjects is maximally correlated. That is, CCA finds modes that relate sets 
of brain measures to sets of subjects’ non-brain-imaging measures; for a graphical 
illustration of this approach see Supplementary Information in ref. 34.
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Permutation testing is then applied to estimate (family-wise-error, multiple-
comparison-corrected) P values for the CCA modes estimated. Nine modes are 
found to be significant (Pcorrected<0.002, with all later modes having Pcorrected > 0.05).  
Because CCA can in general only unambiguously estimate distinct modes up to 
an orthogonal rotation amongst them (by direct analogy to PCA), we identify 
an unambiguous unmixing of the modes using ICA to optimize the final set of 
modes reported. Because we expect meaningful population modes to be much 
more structured (for example, sparser) in the cross-variable dimension than in 
the cross-subject dimension, we calculate ICA components that are statistically 
independent from each other in the cross-variable dimension. In order to take 
full advantage of the numbers of variables originally prepared, we first multiply 
the nine CCA subject-weight vectors into the original IDP and non-IDP data 
matrices (after concatenating these across variables), resulting in nine CCA vari-
able-weight vectors of length 2,501 + 1,100 = 3601. These nine vectors are then 
fed into FastICA33 to estimate nine population data sources having maximal sta-
tistical independence. This general approach (CCA, followed by concatenation of 
CCA weight vectors, followed by ICA) is similar to that proposed by Sui84, except 
that we return to the full feature space (as described above) for the ICA stage, 
rather than staying in the PCA-reduced space. The ICA result is extremely robust, 
with split-half (cross-subjects) reproducibility across the 9 ICA components of 
r > 0.89. Interestingly, 5 of these ICA modes (including modes 7, 8 and 9; Fig. 7) 
are virtually unchanged if the de-confounding step was omitted (correlation of 
variable-weights vectors: r > 0.8).

data, code and results availability. As described above, all source data (including 
raw and processed brain imaging data, derived IDPs, and non-imaging measures) 
is available from UK Biobank via their standard data access procedure (see http:// 
www.ukbiobank.ac.uk/register-apply).

The image processing pipeline will be made publicly available in early 2017 
from http://www.fmrib.ox.ac.uk/ukbiobank - this is the pipeline used to process 
the raw imaging data and generate IDPs, and hence is not needed in order to 
replicate the results of this paper, which could be achieved by accessing IDPs as 
described above, and then using the IDP analysis code described below.

The Matlab code for the univariate and multivariate tests described in  
this paper, and the results of those tests (all univariate correlations and multi-
variate weight vectors) are available from http://www.fmrib.ox.ac.uk/ukbiobank; 
this online resource will be updated as more subjects’ data and more IDPs  
become available.

Higher resolution supplementary figures are available in the PDF version of 
the supplementary information online.
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56. Uǧurbil, K. et al. Pushing spatial and temporal resolution for functional and  
diffusion MRI in the Human Connectome Project. Neuroimage 80, 80–104 
(2013).

57. Larkman, D.J. et al. Use of multicoil arrays for separation of signal from multiple 
slices simultaneously excited. J. Magn. Reson. Imaging 13, 313–317 (2001).

58. Moeller, S. et al. Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration 
using partial parallel imaging with application to high spatial and temporal whole-
brain fMRI. Magn. Reson. Med. 63, 1144–1153 (2010).

59. Setsompop, K. et al. Blipped-controlled aliasing in parallel imaging for simultaneous 
multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 
67, 1210–1224 (2012).

60. Feinberg, D. et al. Multiplexed echo planar imaging for sub-second whole brain 
FMRI and fast diffusion imaging. PLoS One 5, e15710 (2010).

61. Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the 
robust and accurate linear registration and motion correction of brain images. 
Neuroimage 17, 825–841 (2002).

62. Andersson, J., Jenkinson, M. & Smith, S. Non-linear registration aka spatial 
normalization. in FMRIB Technical Report (Oxford University, 2007).

63. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a 
hidden Markov random field model and the expectation-maximization algorithm. 
IEEE Trans. Med. Imaging 20, 45–57 (2001).

64. Smith, S.M. et al. Longitudinal and cross-sectional analysis of atrophy in Alzheimer’s 
disease: cross-validation of BSI, SIENA and SIENAX. Neuroimage 36, 1200–1206 
(2007).

65. Patenaude, B., Smith, S.M., Kennedy, D.N. & Jenkinson, M. A Bayesian model  
of shape and appearance for subcortical brain segmentation. Neuroimage 56, 
907–922 (2011).

66. Mugler, J.P. III. Optimized three-dimensional fast-spin-echo MRI. J. Magn. Reson. 
Imaging 39, 745–767 (2014).

67. Andersson, J.L. & Sotiropoulos, S.N. Non-parametric representation and prediction 
of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. 
Neuroimage 122, 166–176 (2015).

68. Andersson, J.L. & Sotiropoulos, S.N. An integrated approach to correction for off-
resonance effects and subject movement in diffusion MR imaging. Neuroimage 
125, 1063–1078 (2016).

69. Hernández, M. et al. Accelerating fibre orientation estimation from diffusion 
weighted magnetic resonance imaging using GPUs. PLoS One 8, e61892 
(2013).

70. Smith, S.M. et al. Tract-based spatial statistics: voxelwise analysis of multi-subject 
diffusion data. Neuroimage 31, 1487–1505 (2006).

71. Wakana, S., Jiang, H., Nagae-Poetscher, L.M., van Zijl, P.C.M. & Mori, S. Fiber 
tract-based atlas of human white matter anatomy. Radiology 230, 77–87 (2004).

72. Bannister, P.R., Brady, J.M. & Jenkinson, M. Integrating temporal information with 
a non-rigid method of motion correction for functional magnetic resonance images. 
Image Vis. Comput. 25, 311–320 (2007).

73. Barch, D.M. et al. Function in the human connectome: task-fMRI and individual 
differences in behavior. Neuroimage 80, 169–189 (2013).

74. Woolrich, M.W., Ripley, B.D., Brady, M. & Smith, S.M. Temporal autocorrelation in 
univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001).

75. Beckmann, C.F. & Smith, S.M. Probabilistic independent component analysis for 
functional magnetic resonance imaging. IEEE Trans. Med. Imaging 23, 137–152 
(2004).

76. Salimi-Khorshidi, G. et al. Automatic denoising of functional MRI data: combining 
independent component analysis and hierarchical fusion of classifiers. Neuroimage 
90, 449–468 (2014).

77. Smith, S.M., Hyvärinen, A., Varoquaux, G., Miller, K.L. & Beckmann, C.F. Group-
PCA for very large fMRI datasets. Neuroimage 101, 738–749 (2014).

78. Kiviniemi, V., Kantola, J.-H., Jauhiainen, J., Hyvärinen, A. & Tervonen, O. 
Independent component analysis of nondeterministic fMRI signal sources. 
Neuroimage 19, 253–260 (2003).

79. Kiviniemi, V. et al. Functional segmentation of the brain cortex using high model 
order group PICA. Hum. Brain Mapp. 30, 3865–3886 (2009).

80. Smith, S.M. The future of FMRI connectivity. Neuroimage 62, 1257–1266 
(2012).

81. Smith, S.M. et al. Network modelling methods for FMRI. Neuroimage 54, 875–891 
(2011).

82. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

83. Genovese, C.R., Lazar, N.A. & Nichols, T. Thresholding of statistical maps in 
functional neuroimaging using the false discovery rate. Neuroimage 15, 870–878 
(2002).

84. Sui, J. et al. A CCA+ICA based model for multi-task brain imaging data fusion and 
its application to schizophrenia. Neuroimage 51, 123–134 (2010).

www.ukbiobank.ac.uk/register-apply
www.ukbiobank.ac.uk/register-apply
www.fmrib.ox.ac.uk/ukbiobank
www.fmrib.ox.ac.uk/ukbiobank

	Button 2: 
	Page 1: Off



